#include #include "slices.h" int min(int a, int b) { return (abegin=begin; s->end=end; s->status=status; s->next=next; } return s; } // Return the numbers of slices after split (3 in the general case, 2 or 1 in particular cases. -1 is memory error) int sliceSplit(slices_t *slices, slice_t *initialSlice, address_t splitAt, sliceStatus_t statusBefore, sliceStatus_t statusAt, sliceStatus_t statusAfter) { slice_t *secondSlice, *thirdSlice, *rightSlice; int splitAfterSingularity, splitBeforeSingularity; /* Basically, we want to split the slice in 3 : [a;b] shoud be transformed in : [a;splitAt-1], [splitAt;splitAt], [splitAt+1;b] There is exceptions and singularities : * If splitAt is not within [a;b], bail out, no coherent solution * If splitAt==a, the first slice should not exists * If splitAt==b, the last slice shoud not exists * If a==b (and so, ==splitAt), there is nothing to split, just change status But, if statusBefore==statusAt, we don't want an interval [splitAt;splitAt], we want just split in 2. This unwanted interval should be kept merged with the first interval. For pratical reasons with pointer mess-up, the first action is to split between the second and the last slice and then between he first and second if needed. */ if ( splitAt < initialSlice->begin || splitAt > initialSlice->end ) return 2; // Test before act because we'll change values of the initialSlice because // it would become the firstSlice or even the second one if the first is zero-lenght splitAfterSingularity=(splitAt != initialSlice->end); splitBeforeSingularity=(splitAt != initialSlice->begin) && (statusBefore != statusAt); if ( splitAfterSingularity ) { thirdSlice = sliceNew(splitAt+1, initialSlice->end, statusAfter, initialSlice->next); if ( thirdSlice == NULL ) return -1; initialSlice->end = splitAt; // No status change because we'll split again in 2 parts or not initialSlice->next = thirdSlice; if ( initialSlice == slices->last ) slices->last = thirdSlice; (slices->count)++; rightSlice=thirdSlice; } else { rightSlice=initialSlice->next; } if ( splitBeforeSingularity ) { secondSlice = sliceNew(splitAt, splitAt, statusAt, rightSlice); if ( secondSlice == NULL ) return -1; initialSlice->end = splitAt-1; initialSlice->status=statusBefore; initialSlice->next = secondSlice; if ( initialSlice == slices->last ) slices->last = secondSlice; (slices->count)++; } else { initialSlice->status=statusAt; // Two cases : a==splitAt or statusAt==statusBefore } return 1 + (splitBeforeSingularity?1:0) + (splitAfterSingularity?1:0); } slices_t *slicesNew() { slices_t *ss = malloc(1*sizeof(slices_t)); if (ss!=NULL) { ss->count=0; ss->first=NULL; ss->last=NULL; } return ss; } void slicesAppend(slices_t *slices, slice_t *slice) { slice->next=NULL; //XXX Could be generalized if (slices->first==NULL || slices->last==NULL) { slices->first = slice; } else { slices->last->next=slice; } slices->last=slice; (slices->count)++; } slice_t *slicesFindLargest(slices_t *slices, sliceStatus_t status) { slice_t *curr, *sMax = NULL; address_t i, iMax = 0; curr = slices->first; while (curr != NULL) { i=curr->end - curr->begin + 1; if ( curr->status == status && i > iMax ) { iMax = i; sMax = curr; } curr=curr->next; } return sMax; } slice_t *slicesFindLargestFast(slices_t *slices, address_t *foundMax, sliceStatus_t status, address_t knownMax, slice_t *firstToTry) { slice_t *curr, *sMax = NULL; address_t i, iMax = 0; curr = firstToTry; while (curr != NULL) { i=curr->end - curr->begin + 1; if ( curr->status == status ) { if ( knownMax == i ) { *foundMax=i; return curr; } if ( i > iMax ) { iMax = i; sMax = curr; } } curr=curr->next; } curr = slices->first; while (curr != firstToTry) { i=curr->end - curr->begin + 1; if ( curr->status == status && i > iMax ) { iMax = i; sMax = curr; } curr=curr->next; } *foundMax=iMax; return sMax; } char *slicesDump(slices_t *slices, address_t *blockSize, unsigned int charCount, address_t begin, address_t end) { slice_t *curr = slices->first; address_t sb,se,i; char *dump, ci; // If blockSize is 0, try to autodetect to display entire slice chain if (*blockSize == 0) { *blockSize=(end-begin+1)/(charCount-1); // If we have a too big zoom factor, draw it at 1:1 scale if (*blockSize==0) *blockSize=1; } dump = malloc(charCount+1); if (dump==NULL) { return NULL; } memset(dump, ' ', charCount); dump[charCount]=0; while (curr != NULL) { sb=curr->begin / *blockSize; //FIXME : gérer le max également ! /* if ( curr->end / *blockSize > charCount -1 ) { printf("\nBUG : end/blkSze==%lli, charCount==%i\n", curr->end / *blockSize,charCount-1); } */ se=min(curr->end / *blockSize,charCount-1); switch (curr->status) { case S_UNKNOWN: ci='_'; break; case S_UNREADABLE: ci='!'; break; case S_RECOVERED: ci='.'; break; default: ci='~'; break; } for (i=sb;i<=se;i++) { if (dump[i] == ' ' ) { // This is a new information dump[i]=ci; } else if ( dump[i] == ci || dump[i] == '!' ) { // Already the right information or error, don't modify } else { // Multiple information on the same character dump[i]='#'; } } curr=curr->next; } return dump; }