diff options
Diffstat (limited to 'src/fft.c')
-rw-r--r-- | src/fft.c | 241 |
1 files changed, 241 insertions, 0 deletions
diff --git a/src/fft.c b/src/fft.c new file mode 100644 index 0000000..dd91d14 --- /dev/null +++ b/src/fft.c @@ -0,0 +1,241 @@ +#include "fft.h" +#include <math.h> +#include <stdlib.h> + +/* Everything here comes from Audacity 1.3.13 + (orignally in C++ and with more genericity and functionnality) + Original Author : Dominic Mazzoni + Licenced under GPL 2.0 (see LICENCE) +*/ + +#define MaxFastBits 16 + +int *gFFTBitTable[MaxFastBits]={NULL}; + +void InitFFT(); +int NumberOfBitsNeeded(int PowerOfTwo); +inline int FastReverseBits(int i, int NumBits); +int ReverseBits(int index, int NumBits); + + +void FFT(int NumSamples, + int InverseTransform, + float *RealIn, float *ImagIn, float *RealOut, float *ImagOut) +{ + int NumBits; /* Number of bits needed to store indices */ + int i, j, k, n; + int BlockSize, BlockEnd; + + double angle_numerator = 2.0 * M_PI; + double tr, ti; /* temp real, temp imaginary */ +/* + if (!IsPowerOfTwo(NumSamples)) { + fprintf(stderr, "%d is not a power of two\n", NumSamples); + exit(1); + } +*/ + if (!gFFTBitTable[0]) + InitFFT(); + + if (!InverseTransform) + angle_numerator = -angle_numerator; + + NumBits = NumberOfBitsNeeded(NumSamples); + + /* + ** Do simultaneous data copy and bit-reversal ordering into outputs... + */ + for (i = 0; i < NumSamples; i++) { + j = FastReverseBits(i, NumBits); + RealOut[j] = RealIn[i]; + ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i]; + } + + /* + ** Do the FFT itself... + */ + + BlockEnd = 1; + for (BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) { + + double delta_angle = angle_numerator / (double) BlockSize; + + double sm2 = sin(-2 * delta_angle); + double sm1 = sin(-delta_angle); + double cm2 = cos(-2 * delta_angle); + double cm1 = cos(-delta_angle); + double w = 2 * cm1; + double ar0, ar1, ar2, ai0, ai1, ai2; + + for (i = 0; i < NumSamples; i += BlockSize) { + ar2 = cm2; + ar1 = cm1; + + ai2 = sm2; + ai1 = sm1; + + for (j = i, n = 0; n < BlockEnd; j++, n++) { + ar0 = w * ar1 - ar2; + ar2 = ar1; + ar1 = ar0; + + ai0 = w * ai1 - ai2; + ai2 = ai1; + ai1 = ai0; + + k = j + BlockEnd; + tr = ar0 * RealOut[k] - ai0 * ImagOut[k]; + ti = ar0 * ImagOut[k] + ai0 * RealOut[k]; + + RealOut[k] = RealOut[j] - tr; + ImagOut[k] = ImagOut[j] - ti; + + RealOut[j] += tr; + ImagOut[j] += ti; + } + } + BlockEnd = BlockSize; + } + + /* + ** Need to normalize if inverse transform... + */ + + if (InverseTransform) { + float denom = (float) NumSamples; + + for (i = 0; i < NumSamples; i++) { + RealOut[i] /= denom; + ImagOut[i] /= denom; + } + } +} + +void InitFFT() { + int len=2; + int b, i; + for (b=0; b<MaxFastBits; b++) { + gFFTBitTable[b]=malloc(len*sizeof(int)); + + for (i=0; i<len; i++) + gFFTBitTable[b][i] = ReverseBits(i, b+1); + + len <<= 1; + } +} + +int NumberOfBitsNeeded(int PowerOfTwo) +{ + int i; + +/* + if (PowerOfTwo < 2) { + fprintf(stderr, "Error: FFT called with size %d\n", PowerOfTwo); + exit(1); + } +*/ + for (i = 0;; i++) + if (PowerOfTwo & (1 << i)) + return i; +} + +inline int FastReverseBits(int i, int NumBits) +{ + if (NumBits <= MaxFastBits) + return gFFTBitTable[NumBits - 1][i]; + else + return ReverseBits(i, NumBits); +} + +int ReverseBits(int index, int NumBits) +{ + int i, rev; + + for (i = rev = 0; i < NumBits; i++) { + rev = (rev << 1) | (index & 1); + index >>= 1; + } + + return rev; +} + + +/* + * PowerSpectrum + * + * This function computes the same as RealFFT, above, but + * adds the squares of the real and imaginary part of each + * coefficient, extracting the power and throwing away the + * phase. + * + * For speed, it does not call RealFFT, but duplicates some + * of its code. + */ + +void PowerSpectrum(float In[PSNumS], float Out[PSHalf]) { + int i; + + float theta = M_PI / PSHalf; + + float tmpReal[PSHalf]; + float tmpImag[PSHalf]; + float RealOut[PSHalf]; + float ImagOut[PSHalf]; + + for (i=0; i<PSHalf; i++) { + tmpReal[i] = In[2*i]; + tmpImag[i] = In[2*i+1]; + } + + FFT(PSHalf, 0, tmpReal, tmpImag, RealOut, ImagOut); + + float wtemp = sin(0.5 * theta); + + float wpr = -2.0 * wtemp * wtemp; + float wpi = -1.0 * sin(theta); + float wr = 1.0 + wpr; + float wi = wpi; + + int i3; + + float h1r, h1i, h2r, h2i, rt, it; + for (i=1; i < PSHalf/2; i++) { + + i3 = PSHalf - i; + + h1r = 0.5 * (RealOut[i] + RealOut[i3]); + h1i = 0.5 * (ImagOut[i] - ImagOut[i3]); + h2r = 0.5 * (ImagOut[i] + ImagOut[i3]); + h2i = -0.5 * (RealOut[i] - RealOut[i3]); + + rt = h1r + wr * h2r - wi * h2i; + it = h1i + wr * h2i + wi * h2r; + + Out[i] = rt * rt + it * it; + + rt = h1r - wr * h2r + wi * h2i; + it = -h1i + wr * h2i + wi * h2r; + + Out[i3] = rt * rt + it * it; + + wr = (wtemp = wr) * wpr - wi * wpi + wr; + wi = wi * wpr + wtemp * wpi + wi; + } + + rt = (h1r = RealOut[0]) + ImagOut[0]; + it = h1r - ImagOut[0]; + Out[0] = rt * rt + it * it; + rt = RealOut[PSHalf / 2]; + it = ImagOut[PSHalf / 2]; + Out[PSHalf / 2] = rt * rt + it * it; +} + +void DeinitFFT() { + int i; + if (gFFTBitTable[0]) { + for (i=0;i<MaxFastBits;i++) { + free(gFFTBitTable[i]); + } + } +} + |