/************************************************************************* * Arduino Library for Freematics OBD-II UART Adapter * Distributed under BSD License * Visit https://freematics.com for more information * (C)2012-2018 Stanley Huang *************************************************************************/ #include "OBD2UART.h" //#define DEBUG Serial uint16_t hex2uint16(const char *p) { char c = *p; uint16_t i = 0; for (uint8_t n = 0; c && n < 4; c = *(++p)) { if (c >= 'A' && c <= 'F') { c -= 7; } else if (c>='a' && c<='f') { c -= 39; } else if (c == ' ' && n == 2) { continue; } else if (c < '0' || c > '9') { break; } i = (i << 4) | (c & 0xF); n++; } return i; } byte hex2uint8(const char *p) { byte c1 = *p; byte c2 = *(p + 1); if (c1 >= 'A' && c1 <= 'F') c1 -= 7; else if (c1 >='a' && c1 <= 'f') c1 -= 39; else if (c1 < '0' || c1 > '9') return 0; if (c2 == 0) return (c1 & 0xf); else if (c2 >= 'A' && c2 <= 'F') c2 -= 7; else if (c2 >= 'a' && c2 <= 'f') c2 -= 39; else if (c2 < '0' || c2 > '9') return 0; return c1 << 4 | (c2 & 0xf); } /************************************************************************* * OBD-II UART Adapter *************************************************************************/ byte COBD::sendCommand(const char* cmd, char* buf, byte bufsize, int timeout) { write(cmd); idleTasks(); return receive(buf, bufsize, timeout); } bool COBD::readPID(byte pid, int& result) { char cmd[8]; sprintf(cmd, "%02X%02X\r", dataMode, pid); write(cmd); // receive and parse the response return getResult(pid, result); } byte COBD::readPID(const byte pid[], byte count, int result[]) { byte results = 0; for (byte n = 0; n < count; n++) { if (readPID(pid[n], result[n])) { results++; } } return results; } byte COBD::readDTC(uint16_t codes[], byte maxCodes) { /* Response example: 0: 43 04 01 08 01 09 1: 01 11 01 15 00 00 00 */ byte codesRead = 0; for (byte n = 0; n < 6; n++) { char buffer[128]; sprintf_P(buffer, n == 0 ? PSTR("03\r") : PSTR("03%02X\r"), n); write(buffer); if (receive(buffer, sizeof(buffer)) > 0) { if (!strstr_P(buffer, PSTR("NO DATA"))) { char *p = strstr(buffer, "43"); if (p) { while (codesRead < maxCodes && *p) { p += 6; if (*p == '\r') { p = strchr(p, ':'); if (!p) break; p += 2; } uint16_t code = hex2uint16(p); if (code == 0) break; codes[codesRead++] = code; } } break; } } } return codesRead; } void COBD::clearDTC() { char buffer[32]; write("04\r"); receive(buffer, sizeof(buffer)); } void COBD::write(const char* s) { #ifdef DEBUG DEBUG.print("<<<"); DEBUG.println(s); #endif OBDUART.write(s); } int COBD::normalizeData(byte pid, char* data) { int result; switch (pid) { case PID_RPM: case PID_EVAP_SYS_VAPOR_PRESSURE: // kPa result = getLargeValue(data) >> 2; break; case PID_FUEL_PRESSURE: // kPa result = getSmallValue(data) * 3; break; case PID_COOLANT_TEMP: case PID_INTAKE_TEMP: case PID_AMBIENT_TEMP: case PID_ENGINE_OIL_TEMP: result = getTemperatureValue(data); break; case PID_THROTTLE: case PID_COMMANDED_EGR: case PID_COMMANDED_EVAPORATIVE_PURGE: case PID_FUEL_LEVEL: case PID_RELATIVE_THROTTLE_POS: case PID_ABSOLUTE_THROTTLE_POS_B: case PID_ABSOLUTE_THROTTLE_POS_C: case PID_ACC_PEDAL_POS_D: case PID_ACC_PEDAL_POS_E: case PID_ACC_PEDAL_POS_F: case PID_COMMANDED_THROTTLE_ACTUATOR: case PID_ENGINE_LOAD: case PID_ABSOLUTE_ENGINE_LOAD: case PID_ETHANOL_FUEL: case PID_HYBRID_BATTERY_PERCENTAGE: result = getPercentageValue(data); break; case PID_MAF_FLOW: // grams/sec result = getLargeValue(data) / 100; break; case PID_TIMING_ADVANCE: result = (int)(getSmallValue(data) / 2) - 64; break; case PID_DISTANCE: // km case PID_DISTANCE_WITH_MIL: // km case PID_TIME_WITH_MIL: // minute case PID_TIME_SINCE_CODES_CLEARED: // minute case PID_RUNTIME: // second case PID_FUEL_RAIL_PRESSURE: // kPa case PID_ENGINE_REF_TORQUE: // Nm result = getLargeValue(data); break; case PID_CONTROL_MODULE_VOLTAGE: // V result = getLargeValue(data) / 1000; break; case PID_ENGINE_FUEL_RATE: // L/h result = getLargeValue(data) / 20; break; case PID_ENGINE_TORQUE_DEMANDED: // % case PID_ENGINE_TORQUE_PERCENTAGE: // % result = (int)getSmallValue(data) - 125; break; case PID_SHORT_TERM_FUEL_TRIM_1: case PID_LONG_TERM_FUEL_TRIM_1: case PID_SHORT_TERM_FUEL_TRIM_2: case PID_LONG_TERM_FUEL_TRIM_2: case PID_EGR_ERROR: result = ((int)getSmallValue(data) - 128) * 100 / 128; break; case PID_FUEL_INJECTION_TIMING: result = ((int32_t)getLargeValue(data) - 26880) / 128; break; case PID_CATALYST_TEMP_B1S1: case PID_CATALYST_TEMP_B2S1: case PID_CATALYST_TEMP_B1S2: case PID_CATALYST_TEMP_B2S2: result = getLargeValue(data) / 10 - 40; break; case PID_AIR_FUEL_EQUIV_RATIO: // 0~200 result = (long)getLargeValue(data) * 200 / 65536; break; default: result = getSmallValue(data); } return result; } char* COBD::getResponse(byte& pid, char* buffer, byte bufsize) { while (receive(buffer, bufsize) > 0) { char *p = buffer; while ((p = strstr(p, "41 "))) { p += 3; byte curpid = hex2uint8(p); if (pid == 0) pid = curpid; if (curpid == pid) { errors = 0; p += 2; if (*p == ' ') return p + 1; } } } return 0; } bool COBD::getResult(byte& pid, int& result) { char buffer[64]; char* data = getResponse(pid, buffer, sizeof(buffer)); if (!data) { recover(); errors++; return false; } result = normalizeData(pid, data); return true; } void COBD::enterLowPowerMode() { char buf[32]; sendCommand("ATLP\r", buf, sizeof(buf)); } void COBD::leaveLowPowerMode() { // simply send any command to wake the device up char buf[32]; sendCommand("ATI\r", buf, sizeof(buf), 1000); } char* COBD::getResultValue(char* buf) { char* p = buf; for (;;) { if (isdigit(*p) || *p == '-') { return p; } p = strchr(p, '\r'); if (!p) break; if (*(++p) == '\n') p++; } return 0; } float COBD::getVoltage() { char buf[32]; if (sendCommand("ATRV\r", buf, sizeof(buf)) > 0) { char* p = getResultValue(buf); if (p) return (float)atof(p); } return 0; } bool COBD::getVIN(char* buffer, byte bufsize) { for (byte n = 0; n < 5; n++) { if (sendCommand("0902\r", buffer, bufsize)) { int len = hex2uint16(buffer); char *p = strstr_P(buffer + 4, PSTR("0: 49 02 01")); if (p) { char *q = buffer; p += 11; // skip the header do { while (*(++p) == ' '); for (;;) { *(q++) = hex2uint8(p); while (*p && *p != ' ') p++; while (*p == ' ') p++; if (!*p || *p == '\r') break; } p = strchr(p, ':'); } while(p); *q = 0; if (q - buffer == len - 3) { return true; } } } delay(100); } return false; } bool COBD::isValidPID(byte pid) { pid--; byte i = pid >> 3; byte b = 0x80 >> (pid & 0x7); return (pidmap[i] & b) != 0; } byte COBD::begin() { long baudrates[] = {115200, 38400}; byte version = 0; for (byte n = 0; n < sizeof(baudrates) / sizeof(baudrates[0]); n++) { #ifndef ESP32 OBDUART.begin(baudrates[n]); #else OBDUART.begin(baudrates[n], SERIAL_8N1, 16, 17); #endif version = getVersion(); if (version != 0) break; OBDUART.end(); } return version; } byte COBD::getVersion() { byte version = 0; for (byte n = 0; n < 3; n++) { char buffer[32]; if (sendCommand("ATI\r", buffer, sizeof(buffer), 200)) { char *p = strchr(buffer, ' '); if (p) { p += 2; version = (*p - '0') * 10 + (*(p + 2) - '0'); break; } } } return version; } int COBD::receive(char* buffer, int bufsize, unsigned int timeout) { unsigned char n = 0; unsigned long startTime = millis(); char c = 0; for (;;) { if (OBDUART.available()) { c = OBDUART.read(); if (!buffer) { n++; } else if (n < bufsize - 1) { if (c == '.' && n > 2 && buffer[n - 1] == '.' && buffer[n - 2] == '.') { // waiting siginal n = 0; timeout = OBD_TIMEOUT_LONG; } else { if (c == '\r' || c == '\n' || c == ' ') { if (n == 0 || buffer[n - 1] == '\r' || buffer[n - 1] == '\n') continue; } buffer[n++] = c; } } } else { if (c == '>') { // prompt char received break; } if ((int)(millis() - startTime) > timeout) { // timeout break; } idleTasks(); } } if (buffer) { buffer[n] = 0; } #ifdef DEBUG DEBUG.print(">>>"); DEBUG.println(buffer); #endif return n; } void COBD::recover() { sendCommand("\r", 0, 0); } bool COBD::init(OBD_PROTOCOLS protocol) { const char *initcmd[] = {"ATZ\r", "ATE0\r", "ATH0\r"}; char buffer[64]; byte stage; m_state = OBD_DISCONNECTED; for (byte n = 0; n < 2; n++) { stage = 0; if (n != 0) reset(); for (byte i = 0; i < sizeof(initcmd) / sizeof(initcmd[0]); i++) { delay(10); if (!sendCommand(initcmd[i], buffer, sizeof(buffer), OBD_TIMEOUT_SHORT)) { continue; } } stage = 1; if (protocol != PROTO_AUTO) { sprintf(buffer, "ATSP%u\r", protocol); delay(10); if (!sendCommand(buffer, buffer, sizeof(buffer), OBD_TIMEOUT_SHORT) || !strstr(buffer, "OK")) { continue; } } stage = 2; delay(10); if (!sendCommand("010D\r", buffer, sizeof(buffer), OBD_TIMEOUT_LONG) || checkErrorMessage(buffer)) { continue; } stage = 3; // load pid map memset(pidmap, 0xff, sizeof(pidmap)); for (byte i = 0; i < 8; i++) { byte pid = i * 0x20; sprintf(buffer, "%02X%02X\r", dataMode, pid); write(buffer); delay(10); if (!receive(buffer, sizeof(buffer), OBD_TIMEOUT_LONG) || checkErrorMessage(buffer)) break; for (char *p = buffer; (p = strstr(p, "41 ")); ) { p += 3; if (hex2uint8(p) == pid) { p += 2; for (byte n = 0; n < 4 && *(p + n * 3) == ' '; n++) { pidmap[i * 4 + n] = hex2uint8(p + n * 3 + 1); } } } } break; } if (stage == 3) { m_state = OBD_CONNECTED; errors = 0; return true; } else { #ifdef DEBUG Serial.print("Stage:"); Serial.println(stage); #endif reset(); return false; } } void COBD::end() { m_state = OBD_DISCONNECTED; OBDUART.end(); } bool COBD::setBaudRate(unsigned long baudrate) { OBDUART.print("ATBR1 "); OBDUART.print(baudrate, HEX); OBDUART.print('\r'); delay(50); OBDUART.end(); OBDUART.begin(baudrate); recover(); return true; } void COBD::reset() { char buf[32]; sendCommand("ATR\r", buf, sizeof(buf)); delay(3000); sendCommand("ATZ\r", buf, sizeof(buf)); } void COBD::uninit() { char buf[32]; sendCommand("ATPC\r", buf, sizeof(buf)); } byte COBD::checkErrorMessage(const char* buffer) { const char *errmsg[] = {"UNABLE", "ERROR", "TIMEOUT", "NO DATA"}; for (byte i = 0; i < sizeof(errmsg) / sizeof(errmsg[0]); i++) { if (strstr(buffer, errmsg[i])) return i + 1; } return 0; } uint8_t COBD::getPercentageValue(char* data) { return (uint16_t)hex2uint8(data) * 100 / 255; } uint16_t COBD::getLargeValue(char* data) { return hex2uint16(data); } uint8_t COBD::getSmallValue(char* data) { return hex2uint8(data); } int16_t COBD::getTemperatureValue(char* data) { return (int)hex2uint8(data) - 40; } bool COBD::memsInit(bool fusion) { char buf[16]; if (sendCommand("ATTEMP\r", buf, sizeof(buf)) <= 0 || strchr(buf, '?')) return false; if (fusion) { m_fusion = true; return sendCommand("ATQU1\r", buf, sizeof(buf)); } else { if (m_fusion) { m_fusion = false; sendCommand("ATQU0\r", buf, sizeof(buf)); } return true; } } bool COBD::memsRead(int16_t* acc, int16_t* gyr, int16_t* mag, int16_t* temp) { char buf[64]; bool success; if (acc) { success = false; if (sendCommand("ATACL\r", buf, sizeof(buf)) > 0) do { char* p = getResultValue(buf); if (!p) break; acc[0] = atoi(p++); if (!(p = strchr(p, ','))) break; acc[1] = atoi(++p); if (!(p = strchr(p, ','))) break; acc[2] = atoi(++p); success = true; } while (0); if (!success) return false; } if (gyr) { success = false; if (sendCommand("ATGYRO\r", buf, sizeof(buf)) > 0) do { char* p = getResultValue(buf); if (!p) break; gyr[0] = atoi(p++); if (!(p = strchr(p, ','))) break; gyr[1] = atoi(++p); if (!(p = strchr(p, ','))) break; gyr[2] = atoi(++p); success = true; } while (0); if (!success) return false; } if (mag) { success = false; if (sendCommand("ATMAG\r", buf, sizeof(buf)) > 0) do { char* p = getResultValue(buf); if (!p) break; mag[0] = atoi(p++); if (!(p = strchr(p, ','))) break; mag[1] = atoi(++p); if (!(p = strchr(p, ','))) break; mag[2] = atoi(++p); success = true; } while (0); if (!success) return false; } if (temp) { success = false; if (sendCommand("ATTEMP\r", buf, sizeof(buf)) > 0) { char* p = getResultValue(buf); if (p) { *temp = (atoi(p) + 12412) / 34; success = true; } } if (!success) return false; } return true; } bool COBD::memsOrientation(float& yaw, float& pitch, float& roll) { char buf[64]; bool success = false; if (sendCommand("ATORI\r", buf, sizeof(buf)) > 0) do { char* p = getResultValue(buf); if (!p) break; yaw = (float)atof(p++); if (!(p = strchr(p, ','))) break; pitch = (float)atoi(++p); if (!(p = strchr(p, ','))) break; roll = (float) atof(++p); success = true; } while (0); return success; } #ifdef DEBUG void COBD::debugOutput(const char *s) { DEBUG.print('['); DEBUG.print(millis()); DEBUG.print(']'); DEBUG.print(s); } #endif