/************************************************************************* * Arduino GPS/OBD-II/G-Force Data Logger * Distributed under GPL v2.0 * Copyright (c) 2013 Stanley Huang * All rights reserved. *************************************************************************/ #include #include #include #include #include #include #include #include "MicroLCD.h" #include "images.h" #include "datalogger.h" /************************************** * Choose SD pin here **************************************/ //#define SD_CS_PIN SS // generic //#define SD_CS_PIN 4 // ethernet shield //#define SD_CS_PIN 7 // microduino #define SD_CS_PIN 10 // SD breakout /************************************** * Config GPS here **************************************/ #define USE_GPS #define GPS_BAUDRATE 38400 /* bps */ //#define GPS_OPEN_BAUDRATE 4800 /* bps */ /************************************** * Choose LCD model here **************************************/ LCD_SSD1306 lcd; //LCD_ZTOLED lcd; /************************************** * Other options **************************************/ #define USE_MPU6050 0 #define OBD_MIN_INTERVAL 50 /* ms */ #define GPS_DATA_TIMEOUT 2000 /* ms */ // logger states #define STATE_SD_READY 0x1 #define STATE_OBD_READY 0x2 #define STATE_GPS_CONNECTED 0x4 #define STATE_GPS_READY 0x8 #define STATE_ACC_READY 0x10 #define STATE_SLEEPING 0x20 // additional PIDs (non-OBD) #define PID_GPS_DATETIME 0xF0 #define PID_GPS_SPEED 0xF01 #define PID_GPS_COORDINATE 0xF2 #define PID_GPS_ALTITUDE 0xF3 #define PID_ACC 0xF8 #define PID_GYRO 0xF9 #ifdef USE_GPS // GPS logging can only be enabled when there is additional hardware serial UART #if defined(__AVR_ATmega2560__) || defined(__AVR_ATmega1280__) #define GPSUART Serial2 #elif defined(__AVR_ATmega644P__) #define GPSUART Serial1 #endif #ifdef GPSUART #define PMTK_SET_NMEA_UPDATE_1HZ "$PMTK220,1000*1F" #define PMTK_SET_NMEA_UPDATE_5HZ "$PMTK220,200*2C" #define PMTK_SET_NMEA_UPDATE_10HZ "$PMTK220,100*2F" #define PMTK_SET_NMEA_OUTPUT_ALLDATA "$PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0*28" #define PMTK_SET_BAUDRATE "$PMTK251,115200*1F" TinyGPS gps; #endif // GPSUART #endif static uint32_t lastFileSize = 0; //static uint32_t lastDataTime; static uint32_t lastGPSDataTime = 0; static uint16_t lastSpeed = -1; static int startDistance = 0; static uint16_t fileIndex = 0; static uint32_t startTime = 0; // cached data to be displayed static byte lastPID = 0; static int lastData; class COBDLogger : public COBD, public CDataLogger { public: COBDLogger():state(0) {} void setup() { lastGPSDataTime = 0; showStates(); #if USE_MPU6050 if (MPU6050_init() == 0) state |= STATE_ACC_READY; showStates(); #endif #ifdef GPSUART unsigned long t = millis(); do { if (GPSUART.available() && GPSUART.read() == '\r') { state |= STATE_GPS_CONNECTED; break; } } while (millis() - t <= 2000); #endif do { showStates(); } while (!init()); state |= STATE_OBD_READY; showStates(); uint16_t flags = FLAG_CAR | FLAG_OBD; if (state & STATE_GPS_CONNECTED) flags |= FLAG_GPS; if (state & STATE_ACC_READY) flags |= FLAG_ACC; uint16_t index = openFile(LOG_TYPE_DEFAULT, flags); lcd.setFont(FONT_SIZE_SMALL); lcd.setFlags(FLAG_PAD_ZERO); lcd.setCursor(86, 0); lcd.write('['); lcd.printInt(index, 5); lcd.write(']'); lcd.setFlags(0); delay(1000); showECUCap(); delay(3000); readSensor(PID_DISTANCE, startDistance); // open file for logging if (!(state & STATE_SD_READY)) { if (checkSD()) { state |= STATE_SD_READY; showStates(); } } initScreen(); } void loop() { static byte count = 0; #ifdef GPSUART if (millis() - lastGPSDataTime > GPS_DATA_TIMEOUT || gps.satellites() < 3) { // GPS not ready state &= ~STATE_GPS_READY; } else { // GPS ready state |= STATE_GPS_READY; } #endif logOBDData(PID_RPM); logOBDData(PID_SPEED); #if USE_MPU6050 if (state & STATE_ACC_READY) { processAccelerometer(); } #endif switch (count++) { case 0: case 128: logOBDData(PID_DISTANCE); break; case 32: logOBDData(PID_COOLANT_TEMP); break; case 64: logOBDData(PID_INTAKE_TEMP); break; case 160: if (isValidPID(PID_AMBIENT_TEMP)) logOBDData(PID_AMBIENT_TEMP); break; case 192: if (isValidPID(PID_BAROMETRIC)) logOBDData(PID_BAROMETRIC); break; default: logOBDData(PID_THROTTLE); } if ((count & 1) == 0) { logOBDData(PID_ENGINE_LOAD); } else { if (isValidPID(PID_INTAKE_MAP)) logOBDData(PID_INTAKE_MAP); else if (isValidPID(PID_MAF_FLOW)) logOBDData(PID_MAF_FLOW); } if (errors >= 3) { reconnect(); count = 0; } } bool checkSD() { Sd2Card card; SdVolume volume; lcd.setCursor(0, 0); lcd.setFont(FONT_SIZE_MEDIUM); state &= ~STATE_SD_READY; pinMode(SS, OUTPUT); if (card.init(SPI_HALF_SPEED, SD_CS_PIN)) { const char* type; char buf[20]; switch(card.type()) { case SD_CARD_TYPE_SD1: type = "SD1"; break; case SD_CARD_TYPE_SD2: type = "SD2"; break; case SD_CARD_TYPE_SDHC: type = "SDHC"; break; default: type = "SDx"; } lcd.clear(); lcd.print(type); lcd.write(' '); if (!volume.init(card)) { lcd.print("No FAT!"); return false; } uint32_t volumesize = volume.blocksPerCluster(); volumesize >>= 1; // 512 bytes per block volumesize *= volume.clusterCount(); volumesize >>= 10; sprintf(buf, "%dGB", (int)((volumesize + 511) / 1000)); lcd.print(buf); } else { lcd.clear(); lcd.print("SD"); lcd.draw(cross, 32, 0, 16, 16); return false; } if (!SD.begin(SD_CS_PIN)) { lcd.setCursor(48, 0); lcd.print("Bad SD"); return false; } state |= STATE_SD_READY; return true; } private: void initIdleLoop() { if (state & STATE_SLEEPING) return; // called while initializing char buf[10]; unsigned int t = (millis() - startTime) / 1000; sprintf(buf, "%02u:%02u", t / 60, t % 60); lcd.setFont(FONT_SIZE_SMALL); lcd.setCursor(97, 7); lcd.print(buf); #ifdef GPSUART // detect GPS signal if (GPSUART.available()) processGPS(); if (lastGPSDataTime) { state |= STATE_GPS_READY; } #endif #if USE_MPU6050 if (state & STATE_ACC_READY) { accel_t_gyro_union data; MPU6050_readout(&data); char buf[8]; lcd.setFont(FONT_SIZE_SMALL); int temp = (data.value.temperature + 12412) / 340; sprintf(buf, "TEMP%3dC", temp); lcd.setCursor(80, 2); lcd.print(buf); sprintf(buf, "AX%3d", data.value.x_accel / 160); lcd.setCursor(98, 3); lcd.print(buf); sprintf(buf, "AY%3d", data.value.y_accel / 160); lcd.setCursor(98, 4); lcd.print(buf); sprintf(buf, "AZ%3d", data.value.z_accel / 160); lcd.setCursor(98, 5); lcd.print(buf); sprintf(buf, "GX%3d", data.value.x_gyro / 256); lcd.setCursor(64, 3); lcd.print(buf); sprintf(buf, "GY%3d", data.value.y_gyro / 256); lcd.setCursor(64, 4); lcd.print(buf); sprintf(buf, "GZ%3d", data.value.z_gyro / 256); lcd.setCursor(64, 5); lcd.print(buf); delay(50); } #endif } #ifdef GPSUART void dataIdleLoop() { if (GPSUART.available()) processGPS(); } void processGPS() { // process GPS data char c = GPSUART.read(); if (!gps.encode(c)) return; // parsed GPS data is ready static uint32_t lastAltTime = 0; dataTime = millis(); uint32_t speed = gps.speed() * 1852 / 100; logData(PID_GPS_SPEED, speed); // no need to log GPS data when vehicle has not been moving // that's when previous speed is zero and current speed is also zero byte sat = gps.satellites(); if (sat >= 3 && sat < 100) { // lastSpeed will be updated //ShowSensorData(PID_SPEED, speed); long lat, lon; gps.get_position(&lat, &lon, 0); logData(PID_GPS_COORDINATES, (float)lat / 100000, (float)lon / 100000); if (dataTime - lastAltTime > 10000) { uint32_t time; uint32_t date; gps.get_datetime(&date, &time, 0); logData(PID_GPS_TIME, time, date); logData(PID_GPS_ALTITUDE, (float)gps.altitude()); } lcd.setFont(FONT_SIZE_SMALL); if (((unsigned int)dataTime >> 11) & 1) { char buf[16]; sprintf(buf, "LAT:%d.%05ld ", (int)(lat / 100000), lat % 100000); lcd.setCursor(0, 6); lcd.print(buf); sprintf(buf, "LON:%d.%05ld ", (int)(lon / 100000), lon % 100000); lcd.setCursor(0, 7); lcd.print(buf); } else { char buf[16]; lcd.setCursor(0, 6); sprintf(buf, "SAT:%u ", (unsigned int)sat); lcd.print(buf); lcd.setCursor(0, 7); uint32_t time; gps.get_datetime(0, &time, 0); sprintf(buf, "TIME:%08ld ", time); lcd.print(buf); } } lastGPSDataTime = dataTime; } #endif #if USE_MPU6050 void processAccelerometer() { accel_t_gyro_union data; MPU6050_readout(&data); dataTime = millis(); // log x/y/z of accelerometer logData(PID_ACC, data.value.x_accel, data.value.y_accel, data.value.z_accel); //showGForce(data.value.y_accel); // log x/y/z of gyro meter logData(PID_GYRO, data.value.x_gyro, data.value.y_gyro, data.value.z_gyro); } #endif void logOBDData(byte pid) { char buffer[OBD_RECV_BUF_SIZE]; int value; uint32_t start = millis(); // send a query to OBD adapter for specified OBD-II pid sendQuery(pid); // wait for reponse bool hasData; do { dataIdleLoop(); } while (!(hasData = available()) && millis() - start < OBD_TIMEOUT_SHORT); // no need to continue if no data available if (!hasData) { errors++; return; } // display data while waiting for OBD response showSensorData(lastPID, lastData); // get response from OBD adapter pid = 0; char* data = getResponse(pid, buffer); if (!data) { // try recover next time write('\r'); return; } // keep data timestamp of returned data as soon as possible dataTime = millis(); // convert raw data to normal value value = normalizeData(pid, data); // log data to SD card logData(0x100 | pid, value); lastPID = pid; lastData = value; // flush SD data every 1KB if (dataSize - lastFileSize >= 1024) { flushFile(); // display logged data size char buf[7]; sprintf(buf, "%4uKB", (int)(dataSize >> 10)); lcd.setFont(FONT_SIZE_SMALL); lcd.setCursor(92, 7); lcd.print(buf); lastFileSize = dataSize; } // if OBD response is very fast, go on processing other data for a while #ifdef OBD_MIN_INTERVAL while (millis() - start < OBD_MIN_INTERVAL) { dataIdleLoop(); } #endif } void showECUCap() { char buffer[24]; byte pidlist[] = {PID_RPM, PID_SPEED, PID_THROTTLE, PID_ENGINE_LOAD, PID_ABS_ENGINE_LOAD, PID_MAF_FLOW, PID_INTAKE_MAP, PID_FUEL_LEVEL, PID_FUEL_PRESSURE, PID_COOLANT_TEMP, PID_INTAKE_TEMP, PID_AMBIENT_TEMP, PID_TIMING_ADVANCE, PID_BAROMETRIC}; const char* namelist[] = {"RPM", "SPEED", "THROTTLE", "ENG.LOAD1", "ENG.LOAD2", "MAF", "MAP", "FUEL LV.", "FUEL PRE.", "COOLANT", "INTAKE","AMBIENT", "IGNITION", "BARO"}; byte i = 0; lcd.clear(); lcd.setFont(FONT_SIZE_SMALL); for (; i < sizeof(pidlist) / sizeof(pidlist[0]) / 2; i++) { lcd.setCursor(0, i); sprintf(buffer, "%s:%c", namelist[i], isValidPID(pidlist[i]) ? 'Y' : 'N'); lcd.print(buffer); } for (byte row = 0; i < sizeof(pidlist) / sizeof(pidlist[0]); i++, row++) { lcd.setCursor(64, row); sprintf(buffer, "%s:%c", namelist[i], isValidPID(pidlist[i]) ? 'Y' : 'N'); lcd.print(buffer); } } void reconnect() { closeFile(); lcd.clear(); lcd.setFont(FONT_SIZE_MEDIUM); lcd.print("Reconnecting"); startTime = millis(); state &= ~(STATE_OBD_READY | STATE_ACC_READY); state |= STATE_SLEEPING; //digitalWrite(SD_CS_PIN, LOW); for (int i = 0; !init(); i++) { if (i == 10) lcd.clear(); } state &= ~STATE_SLEEPING; fileIndex++; write('\r'); setup(); } byte state; // screen layout related stuff void showStates() { lcd.setFont(FONT_SIZE_MEDIUM); lcd.setCursor(0, 2); lcd.print("OBD"); lcd.draw((state & STATE_OBD_READY) ? tick : cross, 32, 16, 16, 16); lcd.setCursor(0, 4); lcd.print("ACC"); lcd.draw((state & STATE_ACC_READY) ? tick : cross, 32, 32, 16, 16); lcd.setCursor(0, 6); if (!(state & STATE_GPS_READY)) { lcd.print("GPS"); lcd.draw((state & STATE_GPS_CONNECTED) ? tick : cross, 32, 48, 16, 16); } } virtual void showSensorData(byte pid, int value) { char buf[8]; switch (pid) { case PID_RPM: lcd.setCursor(64, 0); lcd.setFont(FONT_SIZE_XLARGE); lcd.printInt((unsigned int)value % 10000, 4); break; case PID_SPEED: if (lastSpeed != value) { lcd.setCursor(0, 0); lcd.setFont(FONT_SIZE_XLARGE); lcd.printInt((unsigned int)value % 1000, 3); lastSpeed = value; } break; case PID_THROTTLE: lcd.setCursor(24, 5); lcd.setFont(FONT_SIZE_SMALL); lcd.printInt(value % 100, 3); break; case PID_INTAKE_TEMP: if (value < 1000) { lcd.setCursor(102, 5); lcd.setFont(FONT_SIZE_SMALL); lcd.printInt(value, 3); } break; case PID_DISTANCE: if ((unsigned int)value >= startDistance) { sprintf(buf, "%4ukm", ((unsigned int)value - startDistance) % 1000); lcd.setFont(FONT_SIZE_SMALL); lcd.setCursor(92, 6); lcd.print(buf); } break; } } virtual void showGForce(int g) { byte n; /* 0~1.5g -> 0~8 */ g /= 85 * 25; lcd.setFont(FONT_SIZE_SMALL); lcd.setCursor(0, 3); if (g == 0) { lcd.clearLine(1); } else if (g < 0 && g >= -10) { for (n = 0; n < 10 + g; n++) { lcd.write(' '); } for (; n < 10; n++) { lcd.write('<'); } lcd.print(" "); } else if (g > 0 && g < 10) { lcd.print(" "); for (n = 0; n < g; n++) { lcd.write('>'); } for (; n < 10; n++) { lcd.write(' '); } } } virtual void initScreen() { lcd.clear(); lcd.backlight(true); lcd.setFont(FONT_SIZE_SMALL); lcd.setCursor(24, 3); lcd.print("km/h"); lcd.setCursor(110, 3); lcd.print("rpm"); lcd.setCursor(0, 5); lcd.print("THR: %"); lcd.setCursor(80, 5); lcd.print("AIR: C"); } }; static COBDLogger logger; void setup() { lcd.begin(); lcd.backlight(true); lcd.setFont(FONT_SIZE_MEDIUM); lcd.println("OBD/GPS Logger"); lcd.println("Initializing"); logger.begin(); logger.initSender(); #ifdef GPSUART #ifdef GPS_OPEN_BAUDRATE GPSUART.begin(GPS_OPEN_BAUDRATE); delay(10); GPSUART.println(PMTK_SET_BAUDRATE); GPSUART.end(); #endif GPSUART.begin(GPS_BAUDRATE); // switching to 10Hz mode, effective only for MTK3329 //GPSUART.println(PMTK_SET_NMEA_OUTPUT_ALLDATA); GPSUART.println(PMTK_SET_NMEA_UPDATE_10HZ); #endif delay(500); //lcd.setColor(0x7FF); lcd.setCursor(0, 2); logger.checkSD(); logger.setup(); } void loop() { logger.loop(); }