summaryrefslogtreecommitdiff
path: root/tests/test5/compute.c
blob: d64f8c11da5018cac1839a0b9bd5c231f9ef114d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#include "compute.h"

#include "fft.h"
#include <math.h>

#define MIN_SAMPLES 256
#define MAX_SAMPLES 2048
//static inline float todB_a(const float *x);
void compute_spectrum(float * data, int width, double rate, float *output);


gfloat compute_level(const float *data, size_t nsamples, size_t nchan) {

	double rate=44100; //TODO dynamique
	size_t i; 
	float input[MAX_SAMPLES], output[128];
	float value;
	int gain=20, range=80;

	if (nsamples >= MAX_SAMPLES) {
		printf("WARN : nsamples >= MAX_SAMPLES : %i >= %i\n", nsamples, MAX_SAMPLES);
		nsamples=MAX_SAMPLES;
	}
	if (nsamples < MIN_SAMPLES) {
		printf("WARN : nsamples < MIN_SAMPLES : %i >= %i\n", nsamples, MIN_SAMPLES);
		for (i=0;i<MIN_SAMPLES;i++) {
			if ( (i/nsamples)%2==1 )
				input[i]=data[i/**nchan*/];
			else
				input[i]=data[nsamples-i-1];
		}
		nsamples=MIN_SAMPLES;
	} else {
		for (i=0;i<nsamples;i++) {
			input[i]=data[i/**nchan*/];
		}
	}

	compute_spectrum(input, nsamples, rate, output);
	//printf("%f\n", output[0]);
	value=0.f;
	for (i=1;i<128;i++) {
		value+=output[i];
	}
	// Mean value
	value/=127.f;
	// 0.0 to 1.0 range
	value=(value + gain + range) / (double)range;
	value=MAX(0.f,value);
	value=MIN(value,1.f);

//	printf("DEBUG: nsamples=%8i value==%f\n", nsamples, value);
	return value;
}
/*
static inline float todB_a(const float *x){
  return (float)((*(int32_t *)x)&0x7fffffff) * 7.17711438e-7f -764.6161886f;
}
*/
// Adapted from Audacity 
void compute_spectrum(float * data, int width, double rate, float *output) {

	int i;
	float processed[256]={0.0f};
//TODO : remove init here(handy for step by step debug)
	float in[256]={0.0f};
	float out[256]={0.0f};

	int start = 0;
	int windows = 0;
	while (start + 256 <= width) {
		for (i=0; i<256; i++)
			in[i] = data[start + i];

		// Windowing : Hanning
		for (i=0; i<256; i++)
			in[i] *= 0.50 - 0.50 * cos(2 * M_PI * i / (256 - 1));

		PowerSpectrum(in, out);

		// Take real part of result
		for (i=0; i<256/2; i++)
			processed[i] += out[i];

		start += 256/2;
		windows++;
	}
	// Convert to decibels
	// But do it safely; -Inf is nobody's friend
	for (i = 0; i < 256/2; i++){
		float temp=(processed[i] / 256 / windows);
		if (temp > 0.0)
			processed[i] = 10*log10(temp);
		else
			processed[i] = 0;
	}
	for(i=0;i<256/2;i++)
		output[i] = processed[i];
}

void audio2hsv_1(gint audio_level, gint *light_h, gint *light_s, gint *light_v) {
	// Dummy code
	*light_h=-audio_level;
	*light_s=audio_level;
	*light_v=65535;
}

		
void hsv2rgb(gint h, gint s, gint v, gint *r, gint *g, gint *b) {
   /*
    * Purpose:
    * Convert HSV values to RGB values
    * All values are in the range [0..65535]
    */
   float F, M, N, K;
   int   I;
   
   if ( s == 0 ) {
      /* 
       * Achromatic case, set level of grey 
       */
      *r = v;
      *g = v;
      *b = v;
   } else {
      I = (int) h/(65535/6);	/* should be in the range 0..5 */
      F = h - I;		/* fractional part */

      M = v * (1 - s);
      N = v * (1 - s * F);
      K = v * (1 - s * (1 - F));

      if (I == 0) { *r = v; *g = K; *b = M; }
      if (I == 1) { *r = N; *g = v; *b = M; }
      if (I == 2) { *r = M; *g = v; *b = K; }
      if (I == 3) { *r = M; *g = N; *b = v; }
      if (I == 4) { *r = K; *g = M; *b = v; }
      if (I == 5) { *r = v; *g = M; *b = N; }
   }
}