1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
#include "compute.h"
#include "fft.h"
#include <math.h>
#define MIN_SAMPLES 256
#define MAX_SAMPLES 2048
//#define MAX(a,b) (a>b?a:b)
//#define MIN(a,b) (a<b?a:b)
//static inline float todB_a(const float *x);
void compute_spectrum(float *data, int width, float output[PSHalf]);
float compute_level(const float *data, size_t nsamples, int rate) {
size_t i;
float input[MAX_SAMPLES], pwrspec[PSHalf];
float value;
int f, min_f_index, max_f_index;
if (nsamples >= MAX_SAMPLES) {
printf("WARN : nsamples >= MAX_SAMPLES : %i >= %i\n", nsamples, MAX_SAMPLES);
nsamples=MAX_SAMPLES;
}
if (nsamples < MIN_SAMPLES) {
printf("WARN : nsamples < MIN_SAMPLES : %i >= %i\n", nsamples, MIN_SAMPLES);
// Replicate with symmetry the sound to obtain an input buffer of the minimal len
for (i=0;i<MIN_SAMPLES;i++) {
if ( (i/nsamples)%2==1 )
input[i]=data[i]; // First channel only
else
input[i]=data[nsamples-i-1];
}
nsamples=MIN_SAMPLES;
} else {
for (i=0;i<nsamples;i++) {
input[i]=data[i]; // First channel only
}
}
compute_spectrum(input, nsamples, pwrspec);
// Compute the mean power for 200Hz to 2000Hz band
min_f_index=((float)PSHalf)*200.f/(((float)rate)/2.f);
max_f_index=((float)PSHalf)*2000.f/(((float)rate)/2.f);
value=0.f;
for (f=min_f_index;f<=max_f_index;f++) {
value+=pwrspec[f];
}
// Mean value
value=value/(max_f_index-min_f_index+1);
return value;
}
/*
static inline float todB_a(const float *x){
return (float)((*(int32_t *)x)&0x7fffffff) * 7.17711438e-7f -764.6161886f;
}
*/
// Adapted from Audacity
void compute_spectrum(float *data, int width, float output[PSHalf]) {
int i, start, windows;
float temp;
float in[PSNumS];
float out[PSHalf];
float processed[PSHalf]={0.0f};
start = 0;
windows = 0;
while (start + PSNumS <= width) {
// Windowing : Hanning
for (i=0; i<PSNumS; i++)
in[i] = data[start+i] *(0.50-0.50*cos(2*M_PI*i/(PSNumS-1)));
// Returns only the real part of the result
PowerSpectrum(in, out);
for (i=0; i<PSHalf; i++)
processed[i] += out[i];
start += PSHalf;
windows++;
}
// Convert to decibels
// But do it safely; -Inf is nobody's friend
for (i = 0; i < PSHalf; i++){
temp=(processed[i] / PSNumS / windows);
if (temp > 0.0)
output[i] = 10*log10(temp);
else
output[i] = 0;
}
}
void audio2hsv_1(int audio_level, int *light_h, int *light_s, int *light_v) {
// Dummy code
*light_h=-audio_level;
*light_s=audio_level;
*light_v=65535;
}
void hsv2rgb(int h, int s, int v, int *r, int *g, int *b) {
/*
* Purpose:
* Convert HSV values to RGB values
* All values are in the range [0..65535]
*/
float F, M, N, K;
int I;
if ( s == 0 ) {
/*
* Achromatic case, set level of grey
*/
*r = v;
*g = v;
*b = v;
} else {
I = (int) h/(65535/6); /* should be in the range 0..5 */
F = h - I; /* fractional part */
M = v * (1 - s);
N = v * (1 - s * F);
K = v * (1 - s * (1 - F));
if (I == 0) { *r = v; *g = K; *b = M; }
if (I == 1) { *r = N; *g = v; *b = M; }
if (I == 2) { *r = M; *g = v; *b = K; }
if (I == 3) { *r = M; *g = N; *b = v; }
if (I == 4) { *r = K; *g = M; *b = v; }
if (I == 5) { *r = v; *g = M; *b = N; }
}
}
|