1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
/*************************************************************************
* Arduino Library for OBD-II UART/I2C Adapter
* Distributed under GPL v2.0
* Visit http://freematics.com for more information
* (C)2012-2014 Stanley Huang <stanleyhuangyc@gmail.com>
*************************************************************************/
#include <Arduino.h>
#include "OBD.h"
//#define DEBUG Serial
uint16_t hex2uint16(const char *p)
{
char c = *p;
uint16_t i = 0;
for (char n = 0; c && n < 4; c = *(++p)) {
if (c >= 'A' && c <= 'F') {
c -= 7;
} else if (c>='a' && c<='f') {
c -= 39;
} else if (c == ' ') {
continue;
} else if (c < '0' || c > '9') {
break;
}
i = (i << 4) | (c & 0xF);
n++;
}
return i;
}
byte hex2uint8(const char *p)
{
byte c1 = *p;
byte c2 = *(p + 1);
if (c1 >= 'A' && c1 <= 'F')
c1 -= 7;
else if (c1 >='a' && c1 <= 'f')
c1 -= 39;
else if (c1 < '0' || c1 > '9')
return 0;
if (c2 >= 'A' && c2 <= 'F')
c2 -= 7;
else if (c2 >= 'a' && c2 <= 'f')
c2 -= 39;
else if (c2 < '0' || c2 > '9')
return 0;
return c1 << 4 | (c2 & 0xf);
}
/*************************************************************************
* OBD-II UART Adapter
*************************************************************************/
#include <Wire.h>
void COBD::sendQuery(byte pid)
{
char cmd[8];
sprintf(cmd, "%02X%02X\r", dataMode, pid);
#ifdef DEBUG
debugOutput(cmd);
#endif
write(cmd);
}
bool COBD::read(byte pid, int& result)
{
// send a query command
sendQuery(pid);
// receive and parse the response
return getResult(pid, result);
}
void COBD::clearDTC()
{
write("04\r");
receive(0, 1000);
}
bool COBD::available()
{
return OBDUART.available();
}
char COBD::read()
{
char c = OBDUART.read();
#ifdef DEBUG
DEBUG.write(c);
#endif
return c;
}
void COBD::write(const char* s)
{
OBDUART.write(s);
}
void COBD::write(char c)
{
OBDUART.write(c);
}
int COBD::normalizeData(byte pid, char* data)
{
int result;
switch (pid) {
case PID_RPM:
case PID_EVAP_SYS_VAPOR_PRESSURE:
result = getLargeValue(data) >> 2;
break;
case PID_FUEL_PRESSURE:
result = getSmallValue(data) * 3;
break;
case PID_COOLANT_TEMP:
case PID_INTAKE_TEMP:
case PID_AMBIENT_TEMP:
case PID_ENGINE_OIL_TEMP:
result = getTemperatureValue(data);
break;
case PID_THROTTLE:
case PID_COMMANDED_EGR:
case PID_COMMANDED_EVAPORATIVE_PURGE:
case PID_FUEL_LEVEL:
case PID_RELATIVE_THROTTLE_POS:
case PID_ABSOLUTE_THROTTLE_POS_B:
case PID_ABSOLUTE_THROTTLE_POS_C:
case PID_ACC_PEDAL_POS_D:
case PID_ACC_PEDAL_POS_E:
case PID_ACC_PEDAL_POS_F:
case PID_COMMANDED_THROTTLE_ACTUATOR:
case PID_ENGINE_LOAD:
case PID_ABSOLUTE_ENGINE_LOAD:
case PID_ETHANOL_FUEL:
case PID_HYBRID_BATTERY_PERCENTAGE:
result = getPercentageValue(data);
break;
case PID_MAF_FLOW:
result = getLargeValue(data) / 100;
break;
case PID_TIMING_ADVANCE:
result = (int)(getSmallValue(data) / 2) - 64;
break;
case PID_DISTANCE: // km
case PID_DISTANCE_WITH_MIL: // km
case PID_TIME_WITH_MIL: // minute
case PID_TIME_SINCE_CODES_CLEARED: // minute
case PID_RUNTIME: // second
case PID_FUEL_RAIL_PRESSURE: // kPa
case PID_ENGINE_REF_TORQUE: // Nm
result = getLargeValue(data);
break;
case PID_CONTROL_MODULE_VOLTAGE: // V
result = getLargeValue(data) / 1000;
break;
case PID_ENGINE_FUEL_RATE: // L/h
result = getLargeValue(data) / 20;
break;
case PID_ENGINE_TORQUE_DEMANDED: // %
case PID_ENGINE_TORQUE_PERCENTAGE: // %
result = (int)getSmallValue(data) - 125;
break;
case PID_SHORT_TERM_FUEL_TRIM_1:
case PID_LONG_TERM_FUEL_TRIM_1:
case PID_SHORT_TERM_FUEL_TRIM_2:
case PID_LONG_TERM_FUEL_TRIM_2:
case PID_EGR_ERROR:
result = ((int)getSmallValue(data) - 128) * 100 / 128;
break;
case PID_FUEL_INJECTION_TIMING:
result = ((int32_t)getLargeValue(data) - 26880) / 128;
break;
case PID_CATALYST_TEMP_B1S1:
case PID_CATALYST_TEMP_B2S1:
case PID_CATALYST_TEMP_B1S2:
case PID_CATALYST_TEMP_B2S2:
result = getLargeValue(data) / 10 - 40;
break;
default:
result = getSmallValue(data);
}
return result;
}
char* COBD::getResponse(byte& pid, char* buffer)
{
while (receive(buffer, OBD_TIMEOUT_SHORT) > 0) {
char *p = buffer;
while ((p = strstr(p, "41 "))) {
p += 3;
byte curpid = hex2uint8(p);
if (pid == 0) pid = curpid;
if (curpid == pid) {
errors = 0;
p += 2;
if (*p == ' ')
return p + 1;
}
}
}
return 0;
}
bool COBD::getResult(byte& pid, int& result)
{
char buffer[OBD_RECV_BUF_SIZE];
char* data = getResponse(pid, buffer);
if (!data) {
recover();
errors++;
return false;
}
result = normalizeData(pid, data);
return true;
}
bool COBD::setProtocol(OBD_PROTOCOLS h)
{
char buf[OBD_RECV_BUF_SIZE];
if (h == PROTO_AUTO) {
write("ATSP00\r");
} else {
sprintf(buf, "ATSP%d\r", h);
write(buf);
}
if (receive(buf, 3000) > 0 && strstr(buf, "OK"))
return true;
else
return false;
}
void COBD::sleep()
{
write("ATLP\r");
receive();
}
void COBD::wakeup()
{
write('\r');
receive();
}
int COBD::getVoltage()
{
char buf[OBD_RECV_BUF_SIZE];
write("ATRV\r");
byte n = receive(buf, 100);
if (n > 0) {
for (byte i = 0; i < n; i++) {
if (buf[i] >= '0' && buf[i] <= '9') {
int v1 = atoi(buf);
int v2 = 0;
char *p = strchr(buf, '.');
if (p++) {
if (*p >= '0' && *p <= '9') {
v2 = *p - '0';
}
}
return v1 * 10 + v2;
}
}
}
return -1;
}
bool COBD::isValidPID(byte pid)
{
if (pid >= 0x7f)
return true;
pid--;
byte i = pid >> 3;
byte b = 0x80 >> (pid & 0x7);
return pidmap[i] & b;
}
void COBD::begin()
{
OBDUART.begin(OBD_SERIAL_BAUDRATE);
#ifdef DEBUG
DEBUG.begin(115200);
#endif
}
byte COBD::receive(char* buffer, int timeout)
{
unsigned char n = 0;
for (unsigned long startTime = millis();;) {
if (available()) {
char c = read();
if (n > 2 && c == '>') {
// prompt char received
break;
} else if (!buffer) {
n++;
} else if (n < OBD_RECV_BUF_SIZE - 1) {
if (c == '.' && n > 2 && buffer[n - 1] == '.' && buffer[n - 2] == '.') {
n = 0;
timeout = OBD_TIMEOUT_LONG;
} else {
buffer[n++] = c;
}
}
} else {
if (millis() - startTime > timeout) {
// timeout
return 0;
}
dataIdleLoop();
}
}
if (buffer) buffer[n] = 0;
return n;
}
void COBD::recover()
{
write('\r');
delay(100);
while (available()) read();
}
bool COBD::init(OBD_PROTOCOLS protocol)
{
const char *initcmd[] = {"ATZ\r","ATE0\r","ATL1\r"};
char buffer[OBD_RECV_BUF_SIZE];
m_state = OBD_CONNECTING;
recover();
for (unsigned char i = 0; i < sizeof(initcmd) / sizeof(initcmd[0]); i++) {
#ifdef DEBUG
debugOutput(initcmd[i]);
#endif
write(initcmd[i]);
if (receive(buffer) == 0) {
m_state = OBD_DISCONNECTED;
return false;
}
delay(50);
}
while (available()) read();
if (protocol != PROTO_AUTO) {
setProtocol(protocol);
}
int value;
if (!read(PID_RPM, value)) {
m_state = OBD_DISCONNECTED;
return false;
}
// load pid map
memset(pidmap, 0, sizeof(pidmap));
for (byte i = 0; i < 4; i++) {
byte pid = i * 0x20;
sendQuery(pid);
char* data = getResponse(pid, buffer);
if (!data) break;
data--;
for (byte n = 0; n < 4; n++) {
if (data[n * 3] != ' ')
break;
pidmap[i * 4 + n] = hex2uint8(data + n * 3 + 1);
}
delay(100);
}
while (available()) read();
m_state = OBD_CONNECTED;
errors = 0;
return true;
}
void COBD::end()
{
m_state = OBD_DISCONNECTED;
OBDUART.end();
}
void COBD::setBaudRate(long baudrate)
{
OBDUART.print("ATBR1 ");
OBDUART.print(baudrate);
OBDUART.print('\r');
OBDUART.end();
delay(100);
OBDUART.begin(baudrate);
}
#ifdef DEBUG
void COBD::debugOutput(const char *s)
{
DEBUG.print('[');
DEBUG.print(millis());
DEBUG.print(']');
DEBUG.print(s);
}
#endif
/*************************************************************************
* OBD-II I2C Adapter
*************************************************************************/
void COBDI2C::begin()
{
Wire.begin();
memset(obdPid, 0, sizeof(obdPid));
memset(obdInfo, 0, sizeof(obdInfo));
#ifdef DEBUG
DEBUG.begin(115200);
#endif
}
void COBDI2C::end()
{
m_state = OBD_DISCONNECTED;
}
bool COBDI2C::read(byte pid, int& result)
{
sendQuery(pid);
dataIdleLoop();
return getResult(pid, result);
}
void COBDI2C::write(const char* s)
{
COMMAND_BLOCK cmdblock = {millis(), CMD_SEND_AT_COMMAND};
Wire.beginTransmission(I2C_ADDR);
Wire.write((byte*)&cmdblock, sizeof(cmdblock));
Wire.write(s);
Wire.endTransmission();
}
bool COBDI2C::sendCommand(byte cmd, uint8_t data, byte* payload, byte payloadBytes)
{
COMMAND_BLOCK cmdblock = {millis(), cmd, data};
Wire.beginTransmission(I2C_ADDR);
bool success = Wire.write((byte*)&cmdblock, sizeof(COMMAND_BLOCK)) == sizeof(COMMAND_BLOCK);
if (payload) Wire.write(payload, payloadBytes);
Wire.endTransmission();
return success;
}
byte COBDI2C::receive(char* buffer, int timeout)
{
uint32_t start = millis();
byte offset = 0;
do {
Wire.requestFrom((byte)I2C_ADDR, (byte)MAX_PAYLOAD_SIZE, (byte)1);
bool hasEnd = false;
for (byte i = 0; i < MAX_PAYLOAD_SIZE && Wire.available(); i++) {
char c = Wire.read();
buffer[offset + i] = c;
if (c == 0)
hasEnd = true;
}
if (buffer[0] == 0) {
// data not ready
dataIdleLoop();
continue;
}
offset += MAX_PAYLOAD_SIZE;
if (!hasEnd) {
continue;
}
return offset;
} while(millis() - start < timeout);
return 0;
}
void COBDI2C::setPID(byte pid)
{
byte n = 0;
for (; n < MAX_PIDS && obdPid[n]; n++) {
if (obdPid[n] == pid)
return;
}
if (n == MAX_PIDS) {
memmove(obdPid, obdPid + 1, sizeof(obdPid[0]) * (MAX_PIDS - 1));
n = MAX_PIDS - 1;
}
obdPid[n] = pid;
}
void COBDI2C::applyPIDs()
{
sendCommand(CMD_APPLY_OBD_PIDS, 0, (byte*)obdPid, sizeof(obdPid));
delay(200);
}
void COBDI2C::loadData()
{
sendCommand(CMD_LOAD_OBD_DATA);
dataIdleLoop();
Wire.requestFrom((byte)I2C_ADDR, (byte)MAX_PAYLOAD_SIZE, (byte)0);
Wire.readBytes((char*)obdInfo, MAX_PAYLOAD_SIZE);
}
|