1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
import bpy
import bmesh
from mathutils import Vector
from bpy_extras.io_utils import create_derived_objects, free_derived_objects
# https://developer.valvesoftware.com/wiki/MAP_file_format
def fmt3(vec3):
return '%f %f %f'%(vec3.x, vec3.y, vec3.z)
#return ' '.join(['%%.%df']*3)%tuple([precision]*3)%(vec3.x, vec3.y, vec3.z)
def fmt_plane(plane3dots):
return '( %s ) ( %s ) ( %s )'%(fmt3(plane3dots[0]), fmt3(plane3dots[1]), fmt3(plane3dots[2]))
def fmt_tex(tev, toff):
return '[ %s %.1f ]'%(fmt3(tev), toff)
def fmt_face(plane3dots, tename, tev1, teoff1, tev2, teoff2, rot, scaleX, scaleY):
return '%s %s %s %s %s'%(
fmt_plane(plane3dots), tename,
fmt_tex(tev1, teoff1),
fmt_tex(tev2, teoff2),
fmt3(Vector([rot, scaleX, scaleY]))
)
def output_entity_start(dict_props, fh):
fh.write('{\n')
for k,v in dict_props.items():
fh.write('\t%-16s "%s"\n'%('"'+k+'"',v))
def output_brush_start(fh):
fh.write('\t{\n')
def output_brush_face(plane3dots, tename, tev1, teoff1, tev2, teoff2, rot, scaleX, scaleY, fh):
fh.write('\t\t%s\n'%fmt_face(plane3dots, tename, tev1, teoff1, tev2, teoff2, rot, scaleX, scaleY))
def output_brush_end(fh):
fh.write('\t}\n')
def output_entity_end(fh):
fh.write('}\n')
def normal(plane3dots):
v01 = plane3dots[1] - plane3dots[0]
v02 = plane3dots[2] - plane3dots[0]
n = v01.cross(v02)
n.normalize()
return n
def flip(plane3dots):
tmp = plane3dots[2]
plane3dots[2] = plane3dots[1]
plane3dots[1] = tmp
def debug1(o=''):
#print(o)
return None
def debug2(fano,plane3dots):
fano.normalize()
debug1(fano)
v01 = plane3dots[1] - plane3dots[0]
v02 = plane3dots[2] - plane3dots[0]
n = v01.cross(v02)
n.normalize()
debug1(n)
debug1(fano-n)
debug1()
def save(operator, context, filepath, worldspawn_props, blender_to_map_scale_factor, use_selection=True):
"""Save the Blender scene to a map file."""
# Make sure that data we want to access is not out of sync because edit mode is in use
if bpy.ops.object.mode_set.poll():
bpy.ops.object.mode_set(mode='OBJECT')
sc = context.scene
if use_selection:
objects = list(ob for ob in sc.objects if ob.is_visible(sc) and ob.type == 'MESH' and ob.data and ob.select)
else:
objects = list(ob for ob in sc.objects if ob.is_visible(sc) and ob.type == 'MESH' and ob.data)
# Simplify each mesh once (a mesh could be used by multiple objects)
for mesh in set([ob.data for ob in objects]):
bm = bmesh.new()
bm.from_mesh(mesh)
bmesh.ops.remove_doubles(bm, verts=bm.verts, dist=1/blender_to_map_scale_factor)
bmesh.ops.holes_fill(bm, edges=bm.edges) #, sides=0
bmesh.ops.connect_verts_concave(bm, faces=bm.faces)
bmesh.ops.connect_verts_nonplanar(bm, faces=bm.faces) #, angle_limit=0.0
bmesh.ops.planar_faces(bm, faces=bm.faces)
bmesh.ops.recalc_face_normals(bm, faces=bm.faces)
bm.to_mesh(mesh)
bm.free()
# Iterate over objects, make computations (set of cross planes) and print them as worldspawn entity brushes
with open(filepath, 'w') as fh:
output_entity_start(worldspawn_props, fh)
for ob in objects:
debug1(ob.name)
mat_to_map = ob.matrix_world * blender_to_map_scale_factor
mesh = ob.data
mesh.update(calc_tessface=True)
for fa in mesh.tessfaces:
output_brush_start(fh)
tename='AAATRIGGER'
tev1 = Vector([1,0,0])
teoff1 = 0
tev2 = Vector([0,-1,0])
teoff2 = 0
rot = 0
scaleX = 1
scaleY = 1
# Make a brush in .map for each face in blender
# Brushes are (strangely) defined as a set of intersecting planes in .map
# Planes are defined with 3 3D points belonging to it
# "They must be in a clockwise order when facing the outside of the plane
# that is, the side that points outwards from the brush"
brfront = [None,None,None]
brback = [None,None,None]
# For now this code take the 3 first vectices of the face
# TODO This can cause troubles if they are colinear or if they have narrow angle
for i in [0,1,2]:
vi = mesh.vertices[fa.vertices[i]].co
# front plane in brush will match face in blender (in global coords, with a scale factor)
brfront[i] = mat_to_map * vi
# back plane will be 1 (map) unit inside (normal facing outside, so substract it)
brback[i] = mat_to_map * ( vi - fa.normal / blender_to_map_scale_factor )
# Check if coords are in clockwise order, else flip them
fano = mat_to_map.to_3x3() * fa.normal
frno = normal(brfront)
epsilon = 0.1
if ( (fano - frno).length_squared > epsilon ):
flip(brfront)
debug1('Front Flipped')
else:
flip(brback)
debug1('Back Flipped')
debug2(mat_to_map.to_3x3() * fa.normal, brfront)
debug2(mat_to_map.to_3x3() *-fa.normal, brback)
output_brush_face(brfront, tename, tev1, teoff1, tev2, teoff2, rot, scaleX, scaleY, fh)
output_brush_face(brback, tename, tev1, teoff1, tev2, teoff2, rot, scaleX, scaleY, fh)
# make 1 side face in brush per blender edge
for i,j in fa.edge_keys:
brside = [None,None,None]
brside[0] = mat_to_map * ( mesh.vertices[i].co )
brside[1] = mat_to_map * ( mesh.vertices[j].co )
brside[2] = mat_to_map * ( mesh.vertices[j].co - fa.normal )
# Let have a plane define by a point A and a normal n
# Let M a point in space. M is on the plane if AM.n = 0
# Now we want to know if the "side" face normal is poiting outwards of the brush (<0)
# Take A = side[0], M = fa.center (that is inside the brush), n = normal(side)
if ( (mat_to_map * fa.center - brside[0]).dot(normal(brside)) < 0):
flip(brside)
debug1('Side Flipped')
debug1(normal(brside))
output_brush_face(brside, tename, tev1, teoff1, tev2, teoff2, rot, scaleX, scaleY, fh)
output_brush_end(fh)
# endfor fa in mesh.tessfaces:
output_entity_end(fh)
return {'FINISHED'}
|